Меню

Станки чпу по дереву сделать самому



Собираем ЧПУ станок по обработке дерева своими руками. Что такое ЧПУ? Что такое фрезер? Можно ли сделать самому?

Всем привет! Продолжаем ликбез. И тема сегодняшних постов «Что такое ЧПУ». Я не беру на себя роль ментора мирового масштаба, но хочу немного донести до масс, что заняться ЧПУ может абсолютно любой человек. Для этого не нужно иметь высшего или технического образования. Нужно только немного (много) почитать и попробовать на деле.

ЧПУ — Числовое Программное Управление. Говоря проще, система управления приводами посредством компьютера.

Фрезер ЧПУ — станок для обработки разных материалов (в нашем случае дерева) путём вращательного движения фрезы относительно заготовки.

Фреза — инструмент с режущими лезвиями (или одним). Сверло — частный случай фрезы.

Как фреза вращается? При помощи какого-то двигателя. Двигатель, в котором можно закрепить инструмент, называется шпиндель.

На повестке вопрос сборки трех осевого фрезерного станка ЧПУ. Какие три оси? Смотрим.

Стрелки влево — вправо — ось X. По ней двигается каретка. Каретка — это зеленая деталь, которая держит на себе шпиндель.

Стрелки вперед — назад — ось Y. По ней двигается стол. В больших станках стол всегда стоит на месте, двигается так называемый портал относительно него, но мы же рассматриваем самый бюджетный вариант. И заметьте, не самый плохой или слабый. Для домашнего хобби — отличный вариант.

Стрелки вверх — вниз — ось Z. По ней двигается шпиндель, заглубляясь или поднимаясь над заготовкой.

Как станок узнает, что ему сейчас делать? Все станки ЧПУ используют некоторые управляющие программы. Иначе говоря, G-code. А если совсем просто, то это документ формата X0 Y0 Z0, то есть даем станку некие координаты и он туда едет. Добавляем F100, и он уже едет туда со скоростью 100 мм/мин. Добавляем S1000, и шпиндель начинает вращаться со скоростью 1000 об/мин. Это просто пример, здесь не столь важны единицы измерения.

Ещё несколько команд, и станок двигается из точки в точку с заданной скоростью с заданными оборотами шпинделя. Конечно, это самый тривиальный пример, в G-code используется огромное количество команд, которое опытный мастер знает наизусть и сможет прочитать это, и не только прочитать, но и понять, что станок будет делать в какой момент времени.

Квадрат или круг можно написать несколькими командами. А как сделать изделие объёмное? Не писать же G-code руками. Конечно, нет. Поэтому разработали разнообразные программы, общее название которых CAD. Они позволяют создавать управляющие программы, которые в свою очередь загружаются в станок и позволяют получить изделие в автоматическом режиме. В дальнейших статьях я более детально остановлюсь на программе ArtCam.

В следующих статьях подробно рассмотрим детали станка, из которых его можно собрать.

Если тема интересная, подписывайтесь! Описание будет самым подробным и понятным даже абсолютным новичкам.

Спасибо за прочтение. Переходите на сайт. Поддержите автора. Буду стараться для Вас!

Источник

Как сделать фрезерный станок по дереву – схема и чертежи сборки своими руками ЧПУ на Ардуино

Для многих проектов фрезерный станок с ЧПУ необходим для хороших и быстрых результатов. После некоторого исследования существующих на данный момент машин CNC, я пришел к выводу, что все машины с ценой до 150 тыс. не могут удовлетворить мои потребности в отношении рабочего пространства и точности.

  • рабочее пространство 900 х 400 х 120 мм
  • относительно тихий шпиндель с высокой мощностью на низких скоростях вращения
  • максимально возможная жесткость (для фрезерования алюминиевых деталей)
  • максимально возможная точность
  • USB-интерфейс
  • потратить до 150 тыс. рублей

С этими требованиями я начал 3D конструирование с разработкой схем и чертежей, проверяя множество доступных деталей. Основное требование: части должны сочетаться друг с другом. В конце концов я решил построить машину на гайке типа 30-B с 8 алюминиевыми рамами с 16-миллиметровыми шарикоподшипниковыми шпинделями, 15-мм шарикоподшипниковыми направляющими и 3-амперными шаговыми двигателями NEMA23, которые легко вписываются в готовую систему крепления.

Эти детали идеально сочетаются друг с другом без необходимости в изготовлении специальных деталей.

Шаг 1: Строим раму

Главное — это хорошее планирование…

Через неделю после заказа прибыли запчасти. И через несколько минут ось Х была готова. — Проще, чем я думал! 15-миллиметровые линейные подшипники HRC имеют очень хорошее качество, и после их установки вы сразу понимаете, что они будут работать очень хорошо.

Через 2 часа при сборке своими руками станка ЧПУ на Ардуино появилась первая проблема: шпиндели не хотят попадать в роликовые подшипники. Мой морозильник недостаточно большой для 1060 мм шпинделей, поэтому я решил достать сухой лед, что означало приостановить проект на неделю.

Шаг 2: Настройка шпинделей

Пришел друг с пакетом сухого льда, и после нескольких минут заморозки шпиндели отлично вписываются в роликовые подшипники. Еще несколько винтов, и это уже немного похоже на станок с ЧПУ.

Шаг 3: Электрические детали

Механическая часть закончена, и я перехожу к электрическим деталям.

Поскольку я очень хорошо знаком с Arduino и хочу иметь полный контроль через USB, я сначала выбрал Arduino Uno со щитом GRBL и степперами TB8825. Эта конфигурация работает очень просто, и после небольшой настройки машина стала управляемой на ПК. Отлично!

Но так как TB8825 работает максимум на 1,9 А и 36 В (становится очень горячим), этого достаточно для запуска машины, но я заметил потери в шагах из-за слишком малой мощности. Длительный процесс фрезерования при такой температуре представляется кошмаром.

Читайте также:  Как сделать летающего самолет из дерева

Я купил дешевый TB6560 из Китая (300 рублей за каждый, доставка 3 недели) и подключил их к щиту GRBL. Номинальные напряжения не очень точны для этой платы, вы найдете номиналы от 12 до 32В. Поскольку у меня уже есть источник питания 36 В, я попытался приспособить именно его.

Результат: два шаговых привода работают нормально, один не может выдержать более высокое напряжение, а другой поворачивается только в одном направлении (невозможно изменить направление).

Итак, снова в поисках хорошего драйвера…

TB6600 — мое окончательное решение. Он полностью закрыт алюминиевым охлаждающим покрытием и прост в настройке. Теперь мои степперы работают по осям X и Y с 2,2А и по оси Z с 2,7А. Я мог поднять до 3А, но поскольку у меня есть закрытая коробка для защиты цепей от алюминиевой пыли, я решил использовать 2,2А, что достаточно для моих нужд и почти не выделяет тепла. Также я не хочу, чтобы степперы уничтожили машину в случае ошибки, когда я даю им слишком много мощности.

Я долго думал над решением для защиты блока питания степперов и преобразователя частоты от мелких алюминиевых деталей. Существует много решений, когда преобразователь устанавливается очень высоко или на достаточном расстоянии от фрезерного станка. Основная проблема в том, что эти устройства выделяют много тепла и нуждаются в их активном охлаждении. Мое окончательное решение — прекрасные колготки моей девушки. Я разрезал их на кусочки по 30 см и использовал в качестве защитного шланга, что очень просто и обеспечивает хороший воздушный поток.

Шаг 4: Шпиндель

Выбор подходящего шпинделя требует много исследований. Сначала я подумал о том, чтобы использовать стандартный шпиндель Kress1050, но, поскольку у него всего 1050 Вт на скорости 21000 об / мин, я не могу ожидать большой мощности на более низких скоростях.

Для моих требований к сухому фрезерованию алюминия и, возможно, некоторых стальных деталей мне нужна мощность на 6000-12000 об / мин.

Вот почему я, наконец, выбрал частотно-регулируемый привод на 3кВт из Китая (вместе с конвертером) за 25 тыс. рублей.

Качество шпинделя очень хорошее. Он довольно мощный и простой в настройке. Я недооценил вес в 9 кг, но, к счастью, моя рама достаточно крепкая и с тяжелым шпинделем проблем нет. (Высокий вес является причиной для привода оси Z на 2,7 А)

Шаг 5: Работа завершена

Готово. Машина работает очень хорошо, у меня было несколько проблем с шаговыми драйверами, но в целом я действительно доволен результатом. Я потратил около 120 тыс. руб., и у меня есть машина, которая точно соответствует моим потребностям.

Первый фрезерный проект был отрицательной формой в POM (Parallax occlusion mapping). Станок отлично справился с задачей!

Шаг 6: Доработка для фрезерования алюминия

Уже в POM я увидел, что крутящий момент на Y-образном подшипнике немного велик, и машина изгибается при высоких усилиях вокруг оси Y. Вот почему я решил купить вторую рейку и соответственно модернизировать портал.

После этого почти нет люфта из-за усилия на шпинделе. Отличное обновление и, конечно, стоит своих денег (10 тыс. рублей).

Теперь я готов к алюминию. При работе с AlMg4,5Mn я получил очень хорошие результаты без какого-либо охлаждения.

Шаг 7: Заключение

Создание собственного станка с ЧПУ на самом деле не ракетостроение. У меня относительно плохие условия работы и оборудование, но имея хороший план работ нужно всего несколько бит, отвертка, зажимы и обычный сверлильный станок. Один месяц в CAD и на план покупок, и четыре месяца сборки, чтобы завершить установку. Создание второго станка прошло бы намного быстрее, но без каких-либо предварительных знаний в этой области мне пришлось много узнать о механике и электронике за это время.

Шаг 8: Детали

Здесь вы можете найти все основные части станка. Я бы порекомендовал сплавы AlMg4,5Mn для всех алюминиевых пластин.

Электрические:
Я купил все электрические части на Ebay.

1500 руб.

  • Шаговый драйвер: 1000 руб.\шт
  • Блок питания: 3000 руб.
  • Шаговые двигатели:

    1500 руб.\шт

  • Фрезерный шпиндель + инвертор: 25 тыс. руб.
    • Линейные подшипники: ссылка
    • Линейные рельсы: ссылка
    • Шариковые циркуляционные шпиндели: ссылка
    • 2x1052mm
    • 1x600mm
    • 1x250mm
    • Фиксированные подшипники шпинделя + держатель степпера: ссылка
    • Плавающий подшипник: ссылка
    • Шпиндельно-шаговые соединения: заказал китайские муфты за 180 руб.\шт
    • Нижние профили: ссылка
    • Х-профили для рельсов: ссылка
    • Y-образные профили для установки степпера / шпинделя оси X: ссылка
    • Профиль на линейном подшипнике X: ссылка
    • Задняя панель / Монтажная панель: 5 мм алюминиевая пластина 600×200.
    • Y-профили: 2x ссылка
    • Z-профиль: ссылка
    • Z-монтажная пластина: 5 мм 250×160 Алюминиевая пластина
    • Z-скользящая пластина для крепления шпинделя: 5 мм 200×160 Алюминиевая пластина

    Шаг 9: Программное обеспечение

    Попользовавшись CAD, затем CAM и, наконец, G-Code Sender я очень разочарован. После долгих поисков хорошего программного обеспечения я остановился на Estlcam, которое является очень удобным, мощным и очень доступным (3 тыс. рублей).

    Он полностью перезаписывает Arduino и самостоятельно контролирует шаговые двигатели. Есть много хороших задокументированных функций. Пробная версия обеспечивает полную функциональность программного обеспечения, лишь добавляя время ожидания.

    К примеру, поиск края. Нужно просто подключить провод к контакту Arduino A5 и к заготовке (если не металлическая, то используйте алюминиевую фольгу, чтобы временно покрыть ее). С помощью машинного управления вы можете теперь прижимать инструмент для фрезерования к рабочей поверхности. Как только цепь замыкается, машина останавливается и устанавливает ось на ноль. Очень полезно! (обычно заземление не требуется, потому что шпиндель должен быть заземлен)

    Читайте также:  Сделай сам своими руками шлифовальный по дереву

    Шаг 10: Усовершенствование

    До настоящего времени оси Y и Z имели временные пластиковые кронштейны для передачи усилий гаек шпинделя и соответственно перемещали фрезерный шпиндель.

    Пластиковые скобы были из прочного пластика, но я им не слишком доверяю. Представьте, что скоба оси Z будет тормозить, фрезерный шпиндель просто упадет (очевидно, в процессе фрезерования).

    Вот почему я теперь изготовил эти кронштейны из алюминиевого сплава (AlMgSi). Результат прилагается на картинке. Они теперь намного прочнее, чем пластиковая версия, которую я сделал раньше без фрезерного станка.

    Шаг 11: Станок в работе

    Теперь с небольшой практикой ЧПУ станок по дереву своими руками уже дает очень хорошие результаты (для хобби). На этих снимках изображено сопло из AlMg4,5Mn. Я должен был фрезеровать его с двух сторон. На последнем фото то, что получилось еще без полировки или наждачной бумаги.

    Я использовал фрезу VHM 6 мм с 3 лопостями. Я понял, что 4-6-миллиметровые инструменты дают очень хорошие результаты на этом станке.

    Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

    Источник

    Фрезерный станок с ЧПУ своими руками. Часть 1.

    Сегодня я расскажу о самом большом на сегодняшний день моем проекте. Это сборка фрезерного станка с ЧПУ. В процессе работы были испытания, ошибки и их исправления, но как говорят «из песни слов не выбросишь» — описание ошибок наглядно объясняет причину конструктивных решений. Даже в кратком изложении текст получился очень длинный, поэтому я разбил статью на 3 части.

    Нужен ли вообще в домашней мастерской деревообрабатывающий станок с ЧПУ? Вопрос спорный. Мастера скажут, что все можно сделать и руками, причем изделие будет нести свою энергетику, станет неповторимо и т. п. Возможно они будут правы, но на дворе 21 век и никуда от компьютерных технологий уже не деться. Даже эту статью не получилось бы сейчас читать, если не было бы компьютера или планшета/смартфона. Свой станок я собрал 2 года назад и могу сказать, что у меня стало больше возможностей, а многие детали изготовлять получается гораздо проще и точнее, особенно, если требуются абсолютно одинаковые. Вот небольшие примеры.

    Например, фоторамку из фанеры 10мм и размером 60*90см было бы проблематично сделать из цельного куска фанеры без моего станка. Изготовление «барашков», гнезд под гайки, различные круги без центрального отверстия – работа не сложная, но требует времени. Теперь это все делается только на станке.

    Сейчас предлагается огромное количество различных готовых станков, но стоимость их для хобби часто недоступна, хотя цена бывает вполне обоснована. Для меня был в первую очередь интересен сам процесс разработки и сборки станка, а уж потом перспективы его применения и возможности хотя бы вернуть потраченные деньги. Перед началом сборки я перечитал огромное количество статей в интернете, насмотрелся до тошноты фотографий готовых станков и с удивлением понял, что внятной инструкции нигде нет. Часто предложены готовые чертежи, что меня не устраивало или общее описание теории. Поэтому попытаюсь изложить ту информацию, которую удалось собрать и которой я в последствии руководствовался. К сожалению, статья тоже не раскрывает многие детали, так как информации очень много – по некоторым вопросам я хочу написать отдельные статьи.

    Возможно многим это будет не интересно, так как информации слишком много, тогда при желании можно просто посмотреть картинки.

    Сначала немного теории – только основные моменты . Все 3D станки имеют одно общее решение. Есть 3 оси по которым может двигаться обрабатывающий инструмент по нужной траектории. В зависимости от инструмента (фреза, лазер, нож, экструдер, карандаш и т.д.) можно получить разные по функционалу станки. Так как места в моей мастерской не много, я решил сделать универсальную станину на разные инструменты. Изначально рассчитывалось рабочее поле 600х900мм с ходом по вертикали 250мм, но реально получилось чуть меньше. За основу была взята конструкция фрезерно-гравировального станка.

    Существует основные 2 конструкции:

    1. С подвижным столом и неподвижным порталом;

    2. С подвижным порталом и стационарным столом.

    Первый вариант более прост конструктивно, но рассчитан только на небольшие по площади столы, второй наиболее распространен, причем эта конструкция различается по типу привода: с одним приводом по центру или двумя по бокам.

    Два привода используются также в более громоздких конструкциях, так как меньше вариантов перекоса портала на направляющих из-за неравномерного скольжения по ним и при этом портал имеет большую жесткость.

    В первую очередь нужно определиться с максимальными размерами рабочей области. Она зависит от предполагаемых задач. Нужно помнить, чем меньше станок, тем он получается бюджетнее. Нет смысла замахиваться сразу на большие размеры. Исправление ошибок в конструкции также обходятся дешевле на маленьких станках. Многие, кто собирал самодельные ЧПУ станки начинали с малых конструкций, а уже с помощью них делали более мощные модели.

    Я буду рассматривать конструкцию с мобильным козловым порталом и стационарным столом. Для начала определимся с системой координат. Она стандартная – три оси X Y Z. Ось Х перемещает фрезер по порталу влево-вправо и она параллельна к торцу станка. Ось Y перемещает портал вперед-назад вдоль длинной стороны стола. Ось Z перемещает фрезер вверх-вниз.

    Читайте также:  Как сделать универсал из дерева

    Форма портала, соотношения расстояний между осями и направляющими, расстояние между подшипниками требует отдельной статьи — там много физики, сапромата, механики и возможно будет моя отдельная статья. Я перечислю только конечные выводы, которыми желательно пользоваться при проектировании конструкции (данные советы актуальны для фрезерного станка, для лазера конструкция может быть значительно легче и проще):

    — минимизировать расстояние по вертикали между направляющими оси Y и нижней направляющей оси X, то есть чем меньше зазор над столом, тем жестче конструкция. В некоторых станках проектировщики специально поднимают рельсы оси Y выше над столом, чтобы увеличить толщину заготовки, но сократить это расстояние;

    — направляющие оси Z должны быть максимально жесткими и не очень длинными, чтобы избежать прогиба и биения при движении фрезы в заготовке;

    — стараться максимально увеличить расстояние между направляющими оси Х, это снизит кручение;

    — желательно определить центр тяжести портала и выбрать такую форму боковых опор, чтобы он попадал в точку размещения фрезы и при этом находился между передним и задним подшипниками оси Y. Поэтому вертикальные стойки часто имеют изогнутую назад форму. В своем станке я определял примерный центр тяжести экспериментально и об этом расскажу ниже.

    Есть еще несколько моментов, но я их сразу не учел и это привело к необходимости изменения конструкции. О них я подробно расскажу в процессе описания сборки как собственные ошибки, поэтому советую дочитать статью до конца.

    Кроме этого, обязательно при сборке станка нужно добиться максимальной жесткости соединений. Любые люфты приводят к потере как точности (инструмент будет двигаться не по нужной траектории), так и повторяемости (траектория правильная, но второй проход может быть смещен относительно первого).

    Выбор материала. Как и многие самоделки, свой первый вариант я начал делать из фанеры. Это значительно дешевле алюминия и проще в сборке, тем более что нужно прочувствовать конструкцию и выявить ее недостатки. В качестве направляющих я брал рельсы и стержни из полированной нержавейки. Это достаточно не дешевый вариант, но наиболее долговечный и жесткий конструктивно (цена-качество для меня была наиболее оптимальное).

    Приводные винты – ШВП. Это на сегодня самый дорогой вариант. Можно делать привод используя обычную строительную шпильку, зубчатые ремни, шпильку с трапецеидальной резьбой, велосипедные цепи, тросы и т.д. Все они имеют люфты, с которыми придется бороться, но в моем варианте они минимальны. Шаговые двигатели покупал специализированные. Часто бытует мнение, что можно взять двигатели от матричных или лазерных принтеров. Я имею отношение к ремонту этого оборудования и могу сказать, что возможно они подойдут только для привода с зубчатым ремнем и на небольшие станочки, так как слабые по моменту сил и имеют огромный угол поворота за один шаг. ШВП у меня перемешает гайку за один оборот на 5мм. Если у двигателя угол 12 градусов, то за один шаг будет 1мм – это максимальная точность, поэтому использовать их не получится.

    Для удешевления конструкции использовал обычные подшипники, а все фланцы и кронштейны делал фанерными. По опыту других конструкций могу сказать, что на небольших оборотах, где нет сильного нагрева подшипников они ничем не хуже и если плотно запрессовать подшипник, то вынуть его удастся только распилив деталь. Существует несколько способов установки подшипников на винт. Я использовал вариант, когда винт имеет 2 независимых подшипника на концах и крепится к двигателю на гибкой муфте. Это было среднее по простоте-качеству соединение. Можно купить готовые наборы со всеми крепежами и подшипниками для ШВП – работы заметно убавится, но расходы тоже существенно возрастут и опять же – ремонт будет возможен только заменой детали, а фанерную можно вырезать заново и быстро.

    Сборку всех основных деталей решил делать на ящичных шипах. Такого я нигде не видел и считаю собственным изобретением, так как мне очень не нравились конструкции скрепленные с помощью болтов и ощетинившиеся гайками как броненосец «Потемкин». Для нарезки шипа использовал свою самодельную ящичную шипорезку .

    Сборку станка начал с вертикальной оси Z как самой маленькой, но на которой можно было отработать все детали. Начал со сборки ШВП. Гайки и винты продаются как отдельно, так и в сборе. Я брал отдельно, так как не смог подобрать нужные по длине готовые винты. Кроме этого, заводская проточка рассчитана на фирменные подшипники и крепеж, который сложно заменить на обычный. Минусом такого выбора является необходимость самостоятельно обтачивать винт. Я думал, что с этим справится любой токарь и оказался не прав. Получилось только со второго раза и далеко не так идеально как я рассчитывал, но это другая история. После токарной обработки нужно надеть гайку на винт – это очень ответственная операция и любая ошибка может привести к высыпанию шариков. Поэтому советую собирать над емкостью, чтобы шарики не потерялись. Если гайка рассыпалась – это конечно печально, но не смертельно – ее можно собрать, хоть и не просто. У меня уже есть по этому поводу опыт.

    Наконец винты в сборе и на гайку вырезал я крепежный блок. С первого раза он не получился, так как сложно было определить его высоту. Это уже окончательный вариант. После этого собрал весь модуль оси Z. Длина направляющих больше винта. Это для экономии.

    Источник