Меню

Как сделать правильную четырехугольную призму из бумаги



Как сделать призму из бумаги? Правильная четырехугольная призма Как сделать призму из картона схема

Призма — это геометрическое тело, многогранник, основаниями которого являются равные многоугольники, а боковыми гранями — параллелограммы. Для непосвященного, возможно, это звучит несколько устрашающе. И, когда вашему ребенку на урок геометрии надо принести призму, собственноручно изготовленную дома, вы пребываете в растерянности, не зная как помочь своему любимому чаду. На самом деле все не так уж и сложно и, воспользовавшись нашими советами, как сделать призму, вы достойно справитесь с этой проблемой.

Как сделать призму из бумаги

Сразу условимся, что делать мы будем прямую призму, то есть призму, у которой боковые ребра будут перпендикулярны основаниям. Сделать же наклонную призму из бумаги весьма проблематично (подобные макеты обычно выполняются из проволоки).

Мы уже знаем, что в основаниях призмы лежат два одинаковых многоугольника. Поэтому нашу работу начнем именно с них. Простейший из многоугольников – треугольник. Значит, и призму сначала будем делать треугольную.

Как сделать треугольную призму

Нам понадобится плотная белая бумага для черчения, карандаш, транспортир, циркуль, линейка, ножницы и клей.

Чертим треугольник, можно любой, но чтобы наша призма получилась особенно красивой, треугольник сделаем равносторонний. Такая призма в геометрии называется «правильная». Выбираем на свое усмотрение величину стороны треугольника, допустим 10 см. Линейкой откладываем этот отрезок на бумаге и транспортиром отмеряем угол в 60 ∗ от одного конца нашего отрезка.

Проводим наклонную линию. На ней при помощи линейки откладываем 10 см от конца отрезка. Таким образом, мы нашли третью вершину треугольника. Соединяем эту точку с концами начального отрезка и равносторонний треугольник готов. Его можно вырезать. Аналогично делаем второй треугольник, или аккуратно обводим на бумаге контуры первого. Ну вот, два основания у нас уже есть.

Делаем боковые грани. Решаем, какая у призмы будет высота. Допустим, 20 см. Чертим прямоугольник, у которого величина одной стороны это высота призмы (в нашем случае – 20 см), а вторая сторона равна величине стороны основания, умноженной на количество этих сторон (у нас: 10 см х 3 = 30 см).

На длинных сторонах делаем отметки через каждые 10 см. Соединяем противоположные отметки прямыми линиями. По ним потом надо будет аккуратно согнуть бумагу. Это — боковые ребра нашей призмы. Намечаем узкие припуски для склеивания по двум длинным и одной короткой стороне прямоугольника (достаточно полосок шириной 1 см). Вырезаем прямоугольник вместе с припусками, аккуратно отгибаем их по разметке. Сгибаем ребра.

Начинаем сборку. Склеиваем прямоугольник по боковой грани в трубу треугольного сечения. Сверху и снизу на отогнутые припуски наклеиваем треугольники-основания. Призма готова.

Вдаваться в подробности вопроса как сделать призму из картона, пожалуй, не стоит. Весь алгоритм сборки остается таким же, только бумагу замените тонким картоном. Меняя количество сторон у многоугольников основания, вы теперь самостоятельно сможете сделать и пяти- и шестиугольную призму.

В основе геометрического тела – призмы лежат многоугольники, а каждая боковая грань – параллелограмм. Непосвященный, возможно, немного испугался. Но если вашего ребенка просят прийти на урок с призмой, вы, естественно, захотите помочь ему и объяснить, как сделать призму из бумаги.

Начнем с изготовления прямой призмы. В этой призме боковые ребра перпендикулярны основаниям. Наиболее проста в изготовлении своими руками призма из бумаги с тремя гранями, так как в ее основаниях лежат простейшие из многоугольников – треугольники. Изготовим «правильную» призму. У нее основания представлены равносторонними треугольниками.

Продумаем, какая по высоте будет наша треугольная призма из бумаги. Начертим прямоугольник-с одной стороной, равной высоте, а другой — равной длине периметру треугольника в основании. Полученный прямоугольник разделим параллельными прямыми на три равные части. От углов прямоугольника, находящегося в середине, циркулем проведем окружности с радиусом, равным стороне нашего треугольника в основании. Где окружности пересекутся за пределами первоначального прямоугольника, поставим точки и соединим их с центрами окружностей. Мы должны получить фигуру, изображенную в середине рисунка. Далее фигуру вырезаем с небольшими припусками для склеивания, сгибаем по имеющимся прямым линиям и получаем готовую призму.

По какому шаблону изготавливается призма из бумаги с четырьмя гранями, наглядно демонстрирует схема на рисунке.

Шестиугольная призма

Пример заготовки для пятигранной призмы представлен на рисунке. Здесь высота пирамиды 10 см, длина сторон у пятигранника в основании по 3 см. Похожим образом может быть изготовлена шестиугольная призма из бумаги, но в ее основании лежит шестиугольник.

Наклонная призма из бумаги представлена на этом рисунке. Ее боковые грани находятся под углом к основанию. Такую призму можно изготовить по шаблону-развертке.

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело . К ним принято относить:

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.

Читайте также:  Как сделать мишку из гофрированной бумаги

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Для площади поверхности куба:

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Для вычисления диагонали призмы используется формула:

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a . В таком случае для первой коробки объём вещества составит:

Для второй коробки длина основания составляет 2a , но неизвестна высота уровня песка:

Поскольку V₁ = V₂ , можно приравнять выражения:

После сокращения обеих частей уравнения на a² получается:

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216


В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м² .

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба


Необходимо построить развертки гранных тел и нанесения на развертку линии пересечения призмы и пирамиды.

Для решения этой задачи по начертательной геометрии необходимо знать:

— сведения о развертках поверхностей, способах их построения и, в частности, построение разверток гранных тел;

— взаимно-однозначные свойства между поверхностью и ее разверткой и способы перенесения точек, принадлежащих поверхности, на развертку;

— методы определения натуральных величин геометрических образов (линии, плоскости и др.).

Порядок решения Задачи

Разверткой называется плоская фигура, которая получается при разрезании и разгибании поверхности до полного совмещения с плоскостью. Все развертки поверхностей (заготовки, выкройки ) строятся только из натуральных величин.

1. Поскольку развертки строятся из натуральных величин, приступаем к их определению, для чего па кальку (миллиметровку или другую бумагу) формата A3, переносится задача № з со всеми точками и линиями пересечений многогранников.

2. Для определения натуральных величин ребер и основания пирамиды используем метод прямоугольного треугольника . Безусловно, можно и другие, но на мой взгляд, этот метод более доходчив для студентов. Суть его заключается в том, что «на построенном прямом угле откладывается на одном катете проекционная величина отрезка прямой, а на другом — разность координат концов данного отрезка, взятая с сопряженной плоскости проекций. Тогда гипотенуза полученного прямого угла дает натуральную величину данного отрезка прямой» .

3. Итак, на свободном месте чертежа (рис.4.1.а) строим прямой угол.

По горизонтальной линии этого угла откладываем проекционную величину ребра пирамиды DA взятую с горизонтальной плоскости проекций — l DA . По вертикальной линии прямого угла откладываем разность координат точек D и A , взятых с фронтальной плоскости проекций (по оси z вниз) — . Соединив полученные точки гипотенузой, получим натуральную величину ребра пирамиды | DA | .

Читайте также:  Как сделать бумагу старой в домашних условиях быстро

Таким образом определяем натуральные величины других ребер пирамиды DB и DC , а также основания пирамиды АВ, ВС, АС (рис.4.2) , для которых строим второй прямой угол. Заметим, что определение натуральной величины ребра DC производится в тех случаях, когда на исходном чертеже он дан проекционно. Это легко определяется, если вспомним правило: «если прямая па какой-либо плоскости проекций параллельна оси координат, то на сопряженной плоскости она проецируется в натуральную величину».

В частности, в примере нашей задачи фронтальная проекция ребра D C параллельна оси х , следовательно, в горизонтальной плоскости DC сразу выражена в натуральной величине | DC | (рис.4.1).

4. Определив натуральные величины ребер и основания пирамиды, приступаем к построению развертки (рис.4.4 ). Для этого на листе формата бумаги ближе к левой стороне рамки берем произвольную точку D считая, что это вершина пирамиды. Проводим из точки D произвольную прямую и откладываем на ней натуральную величину ребра | DA | , получая точку А . Тогда из точки А , взяв на раствор циркуля натуральную величину основания пирамиды R =|АВ| и поместив ножку циркуля в точку А делаем дуговую засечку. Далее берем на раствор циркуля натуральную величину ребра пирамиды R =| DB | и, поместив ножку циркуля в точку D делаем вторую дуговую засечку. В пересечении дуг получаем точку В , соединив ее с точками А и D получаем грань пирамиды D АВ . Аналогичным образом пристраиваем к ребру DB грань DBC , а к ребру DC — грань DC А .

К одной из сторон основания, например В C , пристраиваем основание пирамиды также методом геометрических засечек, беря на раствор циркуля величины сторон А B и A С и делая дуговые засечки из точек B и C получая точку A (рис.4.4).

5. Построение развертки призмы упрощается тем, что на исходном чертеже в горизонтальной плоскости проекций основанием, а во фронтальной – высотой 85мм, она задана сразу в натуральную величину

Для построения развертки мысленно разрежем призму по какому-либо ребру, например по E , закрепив его на плоскости, развернем другие грани призмы до полного совмещения с плоскостью. Вполне очевидно, что получим прямоугольник, у которого длиной является сумма длин сторон основания, а высотой — высота призмы – 85мм .

Итак, для построения развертки призмы поступаем:

— на том же формате, где построена развертка пирамиды, с правой стороны проводим горизонтальную прямую линию и от произвольно взятой точки на ней, например E, последовательно откладываем отрезки основания призмы EK , KG , GU , UE , взятые с горизонтальной плоскости проекций;

— из точек E , K , G , U , E восстанавливаем перпендикуляры, на которых откладываем высоту призмы, взятую с фронтальной плоскости проекций (85мм);

— соединяя полученные точки прямой, получаем развертку боковой поверхности призмы и к одной из сторон основания, например, GU пристраиваем верхнее и нижнее основание методом геометрических засечек, как выполняли при построении основания пирамиды.

6. Для построения линии пересечения на развертке используем правило, гласящее о том, что «любой точке на поверхности соответствует точка на развертке». Возьмем, например, грань призмы GU , где проходит линия пересечения с точками 1-2-3 ; . Отложим на развертке основания GU точки 1,2,3 по расстояниям, взятым с горизонтальной плоскости проекции. Восстановим из этих точек перпендикуляры и отложим на них высоты точек 1’ , 2’, 3’ , взятые с фронтальной плоскости проекции – z 1 , z 2 и z 3 . Таким образом, на развертке получили точки 1, 2, 3, соединив которые получаем первую ветвь линии пересечения.

Аналогично переносятся, все остальные точки. Построенные точки соединяются, получая вторую ветвь линии пересечения. Выделяем красным цветом – искомая линия. Добавим, что при неполном пересечении гранных тел, на развертке призмы будет одна замкнутая ветвь линии пересечения.

7. Построение (перенесение) линии пересечения на развертке пирамиды производится таким же образом, но с учетом следующего:

— поскольку развертки строятся из натуральных величин, необходимо перенести положение точек 1-8 линии пересечения проекций на линии ребер натуральных величин пирамиды. Для этого возьмем, например, точки 2 и 5 во фронтальной проекции ребра DA перенесем их на проекционную величину этого ребра прямого угла (рис.4.1) по линиям связи параллельным оси х , получим искомые отрезки | D 2| и | D 5| ребра DA в натуральных величинах, которые и откладываем (переносим) на развертку пирамиды;

— аналогично переносятся все другие точки линии пересечения, в том числе и точки 6 и 8 , лежащие на образующих Dm и Dn для чего на прямом угле (рис.4.3) определяются натуральные величины этих образующих, а затем на них переносятся точки 6 и 8 ;

— на втором прямом угле, где определены натуральные величины основания пирамиды, переносятся точки m и n пересечений образующих с основанием, которые впоследствии переносятся на развертку.

Таким образом, полученные на натуральных величинах точки 1-8 и перенесенные на развертку, соединяем последовательно прямыми линиями и окончательно получаем линию пересечения пирамиды на ее развертке.

Раздел: Начертательная геометрия /

Это изображение является «обычным» уличным фото. Эстакады ведут взгляд к изображению. сквозь призму

Ключевым элементом любой фотосъемки является то, как вы используете свет. В этой статье вы узнаете, как его разделить. Применение призмы при фотографировании дает новые возможности и является еще одним способом использования преломления света.

Что призма делает со светом?

Поскольку призма является стеклянным объектом, свет преломляется при прохождении через нее, создавая несколько эффектов, которые вы можете использовать в фотографии.

Есть два способа использования призмы.

  • Проецирование радуги — призма, а в частности ее треугольная форма, действуют, разделяя свет и раскрывая волны различной длины в виде радуги. А уже ее вы можете сфотографировать.
  • Перенаправление света — свет может резко изменить направление при прохождении через призму. Это означает, что когда вы будете смотреть сквозь нее, сможете увидеть картину под углом 90 градусов к себе. Этот фактор дает возможность создавать двойную экспозицию.
Читайте также:  Как сделать красивую букву на листе бумаге

На снимке хорошо виден радужный свет из призмы, а также остатки света, испускаемые под разными углами

Использование хрустальной призмы для создания радуги

Отличный способ использования призмы — создание радуги. Чем больше призма, тем больше в итоге получается радуга. Другой способ увеличить ее размер заключается в том, чтобы увеличить расстояние между призмой и поверхностью, на которую вы проецируете радугу. Отличие этих вариантов в том, что с увеличением вышеупомянутого расстояния радужный свет становится более рассеянным и менее интенсивным.

С помощью призмы можно создать собственную радугу

Обратите также внимание на то, как высоко в небе находится солнце. Угол падения солнечного света на призму влияет на угол проецируемой радуги. Легче спроецировать радугу на землю в полдень. Чтобы проецировать радугу горизонтальнее, необходимо фотографировать, когда солнце находится ниже в небе, то есть после восхода солнца или до его захода.

Радуга, как деталь фото

Радужный свет очень красочный, и при проецировании на поверхность это может создать интересный эффект. Ищите поверхность, которая имеет нейтральный цвет (например, серый или белый). Обратите внимание на поверхности с приятной текстурой.

Крутите призму до тех пор, пока не сможете увидеть радугу, проецируемую на поверхность, которую вы фотографируете. Можно, конечно, сделать снимок, удерживая призму и камеру. Но хорошо, если у вас есть друг, который поможет. Поскольку это детальное фото, лучше использовать макрообъектив, но можно отыскать не менее интересные композиции, используя и другие объективы.

Радуга в портретной фотографии

Несомненно, одна из самых популярных форм призменной фотографии — проецирование радуги на лицо модели. Радуга в итоге не будет большой, и было бы, снова-таки, хорошо, если бы другой человек держал призму, пока вы фотографируете.

Три изображения в одном кадре

Можно снимать через стекло те предметы, которые появляются внутри призмы. Поднимите призму и поверните ее. Вы увидите изображения внутри. При этом они не будут являться теми же, что находятся прямо перед вами. В зависимости от того, как вы повернете стеклянную призму, можно будет увидеть одно или два изображения. Именно с ними вы можете работать, чтобы создать одним нажатием кнопки затвора.

Для призменной фотографии — широкоугольные и макрообъективы.

  • Широкоугольный объектив позволяет добавить фоновое изображение в фотографию. Тем не менее, край призмы становится более заметным в кадре. Нелегко размыть изображение с помощью диафрагмы, доступной на большинстве широкоугольных объективов.
  • Макрообъектив. Большая часть призменной фотографии выполняется с его использованием, так как этот объектив позволяет фокусироваться близко к призме и избежать захвата руки в кадре. Переход от фона к изображению в призме также сложнее обнаружить.

Изображение снято макрообъективом с призмой, и в итоге оно выглядит как оптическая иллюзия

Диафрагма для призменной фотографии

Которую вы используете для таких фотографий, в основном зависит от того, что вы планируете сделать с фоном, и того, насколько четким вы хотите получить изображение в призме.

Открытая диафрагма f/2,8 или больше, безусловно, сработает для размытия заднего плана. Большинству фотографий , чтобы добиться ощущения множественной экспозиции. Это означает, что апертура около f/8 является правильным балансом между фоном и деталями и позволяет избежать слишком резкой линии призмы при переходе к заднему плану.

В силу небольшой ширины призмы даже с макрообъективом задний план занимает большую часть кадра. Так что же работает в роли фона для этого типа фотографии?

  • Ведущие линии — фон, который привлекает внимание к изображениям внутри призмы используется эффективно. Это может быть туннель или дорога, уходящая в бесконечность.
  • Текстурный фон — больше пустого холста для изображений в призме. Это может быть кирпичная стена или листья и цветы.
  • Симметрия. Поскольку призма разделяет ваше изображение посередине, использование симметрии с обеих сторон этого разделения является довольно-таки эффективной стратегией.

Использование симметрии заднего плана может хорошо работать в призменной съемке

Изображение в стекле

Теперь самое сложное — получить хорошее изображение внутри призмы. Изображения в ней могут располагаться под углом 90 градусов к тому, как вы смотрите, или, возможно, под углом 60 градусов к краю и спереди относительно того, где стоит фотограф. Включение этого в композицию фона — сложный аспект призменной фотографии.

  • Композиция — у вас уже есть хорошая композиция для вашего фона. Теперь нужно сохранить ее, одновременно добавляя точку интереса, которая бы хорошо смотрелась сквозь призму. Просто используйте метод проб и ошибок. Измените угол наклона призмы или поверните ее; можно также попробовать отойти вперед и назад.
  • Добавление модели. Более простой способ добавить интерес к изображению в призме — сделать его портретной фотографией. Преимущество в том, что вы можете просто попросить модель стоять в нужном положении, из которого преломленный свет проходит через призму.

Добавление модели в композицию этого изображения сделало фотографию сакуры гораздо интереснее

Фракталы — это еще один элемент, использующий преломление в фотографии. Они производят призменные эффекты, но сами по себе не имеют треугольной формы. Вы можете фотографировать через них, не беспокоясь о том, чтобы изображения находились под углом 90 градусов к вам. Фракталы часто используются для создания креативных портретных фотографий с мягкими краями или других абстрактных снимков.

Время идти и делить свет!

Если вы хотите попробовать что-то новое в фотографии, вам определенно понравится . С ней немного сложно фотографировать, но это то, что делает процесс по-настоящему интересным. Именно сейчас пришло время взять хрустальную призму в руки и отправиться навстречу экспериментам!

Источник