Меню

Из чего сделать вольтметр своими руками



Цифровой вольтметр своими руками

Простая схема вольтметра включает в себя измерительный блок и набор резисторов. Это минимальный комплект, пригодный только для того, чтобы провести предварительные замеры. Подобным тестером можно измерить напряжение в розетке или уровень заряда аккумуляторной батареи. Приборы, обеспечивающие высокий класс измерений, требуют более сложной принципиальной схемы. Изготовление самодельного цифрового вольтметра вполне по силам тем, кто может держать в руках паяльник и знает графическое изображение радиоэлементов.

Какие типы бывают

Аппараты такого рода относятся к приборам, выполняющим непосредственный отсчёт при определении значения напряжения. Основным требованием к таким устройствам считают высокое внутреннее сопротивление. При параллельном подключении к участку, на котором нужно протестировать величину напряжения, он не должен оказывать на него никакого влияния.

Если провести классификацию приборов, измеряющих напряжение, то можно выделить следующие пункты:

  • особенность (принцип) работы;
  • цель применения;
  • структуру и методы использования.

Приборы делят на два вида: электромеханические и электронные. Первые представляют собой конструкцию, в которую входят электромеханический механизм и отображающее результат устройство. Вторые делятся на приборы аналоговые и цифровые.

Внимание! Название «электромеханический» означает, что все эти конструкции: электромагнитные, магнитоэлектрические и другие, производят отклонение электроизмерительной системы под воздействием электричества.

Аналоговые устройства в дополнение к набору шунтов включают в свой состав усилитель. Это узел, позволяющий увеличить нижний интервал измерений и повысить Rвх, а также проводить измерение постоянного и переменного напряжения.

Цифровой вольтметр отображает на дисплей данные в цифровом формате. Схема допускает преобразование напряжения в электрический код при помощи аналого-цифрового устройства.

Тестеры по цели применения позволяют выполнять следующие опции:

  • измерение разности потенциалов постоянного тока;
  • определение величины напряжения переменного тока;
  • замеры импульсных напряжений;
  • фазочувствительные измерительные аппараты;
  • универсальные устройства;
  • приборы избирательного (селективного) действия.

Структура, строение и способы использования позволяют применять вольтметры для стационарного размещения, щитового расположения и для измерений в полевых условиях (переносные).

Вольтметр на основе микропроцессора

Работа таких аппаратов основана на функционировании встроенного микропроцессора. Система выполняет сервисные опции, которые не только обеспечивают различные режимы тестирования, но и определяют характеристики испытуемых сигналов. В операционное запоминающее устройство заложена программа, которая управляет работой вольтметра.

Важно! Вольтметры – наиболее подходящие приборы для осуществления всего спектра диагностики, который может дать микропроцессор.

Микропроцессорные вольтметры наделены следующими преимуществами:

  • повышенный класс точности измерений;
  • простота и лёгкость управления прибором;
  • допустимость работы с измеренными значениями в разрезе математических функций;
  • внутренний программный самоконтроль за калибровкой и диагностикой точности измерений;
  • ведение статистики результатов.

Милливольтметр переменного тока, своими руками собранный на микропроцессоре, будет состоять из следующих узлов:

  • входное устройство: усилитель, фильтры, аттенюатор (узел затуханий);
  • АЦП – преобразователь аналогового сигнала в цифровой;
  • устройство отображения цифрового результата;
  • узел управления устройством.

Часто входной блок включает в свой состав измерительный преобразователь напряжения переменного тока в постоянное напряжение.

Информация. Цифровые вольтметры на микропроцессоре – это тестеры, имеющие широкие пределы измерения, ручной или автоматический выбор измеряемого диапазона. Ими можно измерять не только напряжения обоих видов тока, но и определять сопротивление резистивных элементов.

Принципиальная схема вольтметра

Для того чтобы сделать электронный милливольтметр с использованием АЦП, можно взять такую микросхему, как СА3162. Тестер, собранный по такой схеме, позволяет измерять напряжение в интервале от 0 – 100 В. Микросборка СА3162Е – это АЦП с Uвх. макс. = 999 mV . Так же здесь присутствует логическая схема, выдающая результат в виде 3-х чередующихся двоично-десятичных 4-х разрядных кодов.

Внимание! В данной сборке существует функция опроса разрядности схемы при динамической индикации. Для этого задействуются общие выводы анодов.

Выбор деталей

Кроме АЦП, ещё понадобится микросхема КР514ИД2. Она представляет собой двоично-десятичный дешифратор и нужна для обеспечения работы светодиодного индикатора. Индикатор для этой микросхемы содержит 7 сегментов с общим анодом. В структуру схемы входят три управляющих ключа и устройство светодиодной индикации из 3-х индикаторов.

Детали

Для сборки вольтметра необходимы следующие компоненты:

  • микросхемы СА31162 и КР514ИД2;
  • транзисторы КТ361 – 3 шт.;
  • резисторы постоянные мощностью 0,125 Вт, номиналом: 1кОм – 4 шт.; 470 Ом – 7 шт.; 470 кОм – 1 шт.; 4,7 кОм – 1 шт.; 820 кОм – 1 шт.;
  • переменные резисторы: 5,1 кОм (регулировка режима «предел») и 47 кОм (регулировка «установка нуля»)
  • конденсаторы: 0,22 мФ – 2шт.; 6800 пФ; электролитический на 100 мФ*150 В;
  • индикаторы АЛ324Б – 3 шт.
Читайте также:  Как сделать цветы из гипюра своими руками пошагово

Детали можно брать б/у, с выводами достаточной длины для успешного монтажа. Транзисторы ключей подбираются с одинаковыми сопротивлениями переходов или с близкими значениями.

Подготовка платы

Детали монтируются на самодельной плате из фольгированного текстолита. Для закрепления элементов в плате высверливаются отверстия. Плату, на которой можно собрать цифровой вольтметр своими руками, можно изготовить самостоятельно. Предварительно на куске плотного картона располагаются заготовленные элементы. Выводами необходимо проткнуть картон. После этого рисуют соединяющие проводники, согласно схеме. Далее рисунок переносится на текстолит. Лаком или эмалью покрываются соединительные дорожки, после чего плату протравливают в растворе и тщательно промывают.

Раствор готовится из следующих компонентов:

  • 100 мл перекиси водорода (3%);
  • 30 г. (1 ст. л) лимонной кислоты;
  • 5 г. (ч. л.) поваренной соли.

К сведению. В случае необходимости можно добавить воды и подогревать раствор, это поможет процессу проходить быстрее. Данная пропорция рассчитана на объём раствора, позволяющий обработать текстолит площадью 10 см2.

Подключение прибора

После того, как запаяны все детали, и проверена правильность монтажа, прибор можно включать, подав на него питание постоянного напряжения 5 В от внешнего источника питания.

Блок питания (БП)

Источник питания для вольтметра своими руками можно не собирать. На плату устанавливают разъём и подают 5 В через шнур USB от БП для зарядки сотового телефона.

Сборка и настройка

Плату помещают в подходящий по размерам корпус и закрепляют винтами. Тут же необходимо предусмотреть место для аккумулятора и установку гнезда для подзарядки. На переднюю панель выводятся клеммы подключения измерительных щупов и рабочие оси переменных резисторов. Снаружи корпуса устанавливается и индикатор показаний результатов.

Самодельный вольтметр на СА31162 в особой настройке не нуждается. Резистором R4 на приборе калибруется «ноль» при аналогичной величине Uвх. Резистором R5 калибруют пределы измерения по заранее известной величине Uвх.

Самодельная конструкция цифровых вольтметров, выполненная на качественных компонентах, не уступает заводским изделиям. Аналогичные схемы можно собрать на АЦП типа КР572ПВ2, КР572ПВ5. Вместо дешифратора на логике ТТЛ, указанного в схеме, допустимо применять детали на логике КМОП (МОП), предварительно согласовав такую сборку с микросхемой АЦП.

Видео

Источник

Простой сетевой вольтметр своими руками

Здравствуйте, уважаемые читатели и самоделкины!

Наверняка у многих из Вас бывали ситуации, когда нужно измерить сетевое напряжение, либо отслеживать его в течение длительного времени. Это удобно для контроля «просадки» при включении мощных устройств, а также в случаях, когда качество сетевого напряжения низкое.

В данной статье автор YouTube канала «Mextraf» расскажет Вам, как он изготовил вольтметр для сети 220 В. Это устройство можно вставить в розетку, и отслеживать изменения напряжения.

Такая самоделка весьма проста в изготовлении, а ее стоимость составит чуть больше ста рублей.

Материалы.
— Цифровой светодиодный вольтметр
— Корпус от старого зарядного устройства или блока питания
— Провода.


Вот такое простое и удобное приспособление получилось.

Конечно, благодаря размерам примененного модуля, его можно врезать даже в сетевой фильтр, обычно там достаточно места.


Если же Вам нужно более серьезное устройство, которое может выступать в роли счетчика, индикатора мощности и обладающее дополнительными функциями, то можно купить готовый измеритель параметров переменного тока.

Благодарю автора за способ изготовления простого вольтметра для розетки.

Всем хорошего настроения, крепкого здоровья, и интересных идей!

Авторское видео можно найти здесь.

Источник

Из чего сделать вольтметр своими руками

У меня в мастерской скопилась целая куча батареек — пальчики и мизинчики, таблетки и кроны. Какие-то использованные, какие-то совсем новые. Чтобы найти рабочие, я собрал простой цифровой вольтметр.

Что понадобится

— микроконтроллер Arduino Uno
— текстовый ЖК экран
— пара резисторов на 10 кОм
— выпрямительный диод
— клемник
— макетная плата
— соединительные провода «папа-папа»

Читайте также:  Как сделать своими руками кровать для кукол из дсп

Микроконтроллер Arduino Uno умеет измерять напряжение на контактах для подключения аналоговых устройств. Плата рассчитана на постоянный ток напряжением до 5 вольт, более высокое напряжение может повредить плату. Некоторые батарейки выдают больше, например «Крона» — 9 вольт. Чтобы не повредить плату, добавлю простой делитель напряжения — он позволит справиться с 10 вольтами.

Соберу вольтметр на макетной плате: так можно быстро менять схему, добавлять новые детали и исправлять ошибки. С паяльником это намного труднее.

Шаг первый. Подключаем подсветку экрана

Жидкокристалический экран — это сложное электронное устройство. Кроме дисплея, на борту модуля предусмотрена собственная память, микропроцессор для обработки сигналов и электронные компоненты, которые помогают менять яркость подсветки и контраст символов. Чтобы экран заработал, придётся подключить минимум 12 контактов.

Начнём с самого простого, подсветки экрана. За неё отвечает пара ног: 15 — это плюс, а 16 — минус. На моём экране они расположены справа, но у вашего модуля порядок ножек может быть другим. Проверьте документацию, эти ножки называются LED+ и LED-

Если всё сделали правильно, загорится подсветка экрана.

Можно начинать подключать остальные ножки.

Шаг 2. Подключаем экран

Разобьём подключение на два этапа. Сначала подключим правую группу пинов, затем — левую.

Пойдём справа налево: подключим ножки 1, 2, 3, 4, 5 и 6.

Ножки 1 (GND) и 2 (UCC)отвечают за питание электроники модуля. Подключим их к плюсу и минусу на макетной плате.

Ножка 3 (Uo) отвечает за управление контрастностью. Проще всего просто подключить её к общему минусу, так контрастность будет максимальной.

Ножки 4 (Ao), 5 (R/W) и 6 (E) служат для управления режимами работы экрана. Подключим среднюю к минусу, а остальные к контактам 13 и 12 на Arduino. Звучит запутанно, но разобраться вам поможет схема подключения.

К сожалению пока проверить экран не получится, чтобы вывести хотя бы одну точку, придётся подключить ещё четыре ножки. На моём модуле это левая группа контактов, они пронумерованы с 14 по 11.

Эти контакты отвечают за передачу символов, которые будут выводиться на экран. Внимательно изучите свой модуль и подключите их в таком порядке:
— 14 (DB7) ножку экрана к 8 контакту платы Arduino,
— 13 (DB6) ножку к 9 контакту,
— 12 (DB5) ножку к 10 контакту,
— 11 (DB4) ножку к 11 контакту (наконец-то номера совпали!).

Шаг 2 и ¾. Проверяем подключение

Втыкая дюжину проводов, немудрено ошибиться. Поэтому проверим как работает экран. Для этого загрузим в плату простую программу. Как это сделать, я рассказывал в самом первом проекте. Если забыли, посмотрите статью о бесконтактном санитайзере.

Скопируйте код и у вас на вашем экране появится мотивирующая записка от нашего журнала.

Шаг три. Добавляем делитель напряжения и защитный диод

Напряжение пальчиковых и мизинчиковых батареек мы можем измерять подключаясь к контактам Arduino, но это чревато двумя проблемами. Плата может сгореть, если:
— попробуем измерить напряжение на большой батарейке, например на «Кроне» или «Планете»,
— перепутаем полярность, подключим минус батарейки к контакту платы.

С первой проблемой справится простой делитель напряжения. Достаточно пары 10 килоомных сопротивлений. Если соединить их последовательно, они разделят напряжение пополам. Поэтому к плате можно будет подключать батарейки с напряжением до 10 вольт.

Минусовой провод нашего вольтметра подключим через выпрямительный диод. Он работает как простой клапан, пропускает ток только в одном направлении. Если кто-то перепутает полярность, цепь не замкнётся и плата останется цела и невредима. Главное, не перепутайте полярность самого диода: минус на нём обозначен полоской вокруг корпуса.

Теперь загрузите в плату новую программу. Код не сложный, каждая строка прокомментирована, поэтому вы легко разберётесь в коде.

Вот и всё. Всего за десять минут мы собрали функциональный прибор — настоящий цифровой вольтметр. Теперь вы сможете навести порядок в ящике с батарейками. Удачи!

Читайте также:  Что сделать на день рождения бабушке своими руками из шариков

Источник

Простой самодельный вольтметр

Здравствуй дорогой читатель. Иногда возникает необходимость иметь «под рукой» небольшой простенький вольтметр. Сделать такой вольтметр своими руками не составит большого труда.

О пригодности вольтметра для измерения напряжений в тех или иных цепях судят по его входному сопротивлению, которое складывается из сопротивления рамки стрелочного прибора и сопротивления добавочного резистора. Так как на разных пределах добавочные резисторы имеют разные номиналы, то и входное сопротивление прибора будет другим. Чаще вольтметр оценивают его относительным входным сопротивлением, характеризующим отношение входного сопротивления прибора к 1В измеряемого напряжения, например 5кОм/В. Это удобнее: входное сопротивление вольтметра на разных пределах измерений разное, а относительное входное сопротивление постоянное. Чем меньше ток полного отклонения стрелки измерительного прибора Iи, используемого в вольтметре, тем больше будет его относительное входное сопротивление, тем точнее будут производимые им измерения. В транзисторных конструкциях приходится измерять напряжение от долей вольта до нескольких десятков вольт, а в ламповых еще больше. Поэтому однопредельный вольтметр неудобен. Например, вольтметром со шкалой на 100В нельзя точно измерить даже напряжения 1— 5В, так как отклонение стрелки получится малозаметным. Поэтому нужен вольтметр, имеющий хотя бы три — четыре предела измерений. Схема такого вольтметра постоянного тока показана на рис.1. Наличие четырех добавочных резисторов R1, R2, R3 и R4 свидетельствует о том, что вольтметр имеет четыре предела измерений. В данном случае первый предел 0-1В, второй 0-10В, третий 0-100В и четвертый 0-1000В.
Сопротивления добавочных резисторов можно рассчитать по формуле, вытекающей из закона Ома: Rд= Uп/Iи — Rп, здесь Uп — наибольшее напряжение данного предела измерений, Iи – ток полного отклонения стрелки измерительной головки, а Rп – сопротивление рамки измерительной головки. Так, например, для прибора на ток Iи = 500мкА (0,0005А) и рамкой сопротивлением 500 Ом сопротивление добавочного резистора R1, для предела 0-1В должно быть 1,5кОм, для предела 0-10В — 19,5кОм, для предела 0-100В — 199,5кОм, для предела 0-1000 – 1999,5кОм. Относительное входное сопротивление такого вольтметра будет 2кОм/В. Обычно, в вольтметр монтируют добавочные резисторы с номиналами, близкими с расчетными. Окончательно же «подгонку» их сопротивлений производят при градуировке вольтметра путем подключения к ним параллельно или последовательно других резисторов.

Если вольтметр постоянного тока дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее — пульсирующее), получим вольтметр переменного тока. Возможная схема такого прибора с однополупериодным выпрямителем показана на рис.2. Работает прибор следующим образом. В те моменты времени, когда на левом (по схеме) зажиме прибора положительная полуволна переменного напряжения, ток идет через диод Д1 и далее через микроамперметр к правому зажиму. В это время диод Д2 закрыт. Во время положительной полуволны на правом зажиме, диод Д1 закрывается, и положительные полуволны переменного напряжения замыкаются через диод Д2, минуя микроамперметр.
Добавочный резистор Rд рассчитывают так же, как и для постоянных напряжений, но полученный результат делят на 2,5-3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный — рис.3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Можно рассчитать Rд и по другим формулам. Сопротивление добавочных резисторов вольтметров выпрямительной системы, выполненных по схеме на рис.2, вычисляют по формуле:
Rд = 0,45*Uп/Iи – (Rп + rд);
Для схемы на рис.3 формула имеет вид:
Rд = 0,9*Uп/Iи – (Rп + 2rд); где rд – сопротивление диода в прямом направлении.
Показания приборов выпрямительной системы пропорциональны средне выпрямленному значению измеряемых напряжений. Шкалы же их градуируют в среднеквадратических значения синусоидального напряжения, поэтому показания приборов выпрямительной системы равны среднеквадратичному значению напряжения лишь при измерении напряжений синусоидальной формы. В качестве выпрямительных диодов используются германиевые диоды Д9Д. Такими вольтметрами можно измерять и напряжение звуковой частоты до нескольких десятков килогерц. Шкалу для самодельного вольтметра можно начертить с помощью программы FrontDesigner_3.0_setup.

Источник